Article ID Journal Published Year Pages File Type
443299 Journal of Molecular Graphics and Modelling 2015 10 Pages PDF
Abstract

•MD simulations of apo-TcTIM and hTIM in solution are performed.•The binding mode and mechanism of action of three TcTIM inhibitors are proposed.•We found interfacial hot spots that should be considered in novel drug design.•The selectivity of these inhibitors against TcTIM are explained based on MD results.

Trypanosoma cruzi (T. cruzi) triosephosphate isomerase (TcTIM) is a glycolytic enzyme essential for parasite survival and has been considered an interesting target for the development of new antichagasic compounds. The homodimeric enzyme is catalytically active only as a dimer. Interestingly, significant differences exist between the human and parasite TIMs interfaces with a sequence identity of 52%. Therefore, compounds able to specifically disrupt TcTIM but not Homo sapiens TIM (hTIM) dimer interface could become selective antichagasic drugs. In the present work, the binding modes of 1,2,4-thiadiazol, phenazine and 1,2,6-thiadiazine derivatives to TcTIM were investigated using molecular docking combined with molecular dynamics (MD) simulations. The results show that phenazine and 1,2,6-thiadiazine derivatives, 2 and 3, act as dimer-disrupting inhibitors of TcTIM having also allosteric effects in the conformation of the active site. On the other hand, the 1,2,4-thiadiazol derivative 1 binds into the active site causing a significant decrease in enzyme mobility in both monomers. The loss of conformational flexibility upon compound 1 binding suggests that this inhibitor could be preventing essential motions of the enzyme required for optimal activity. The lack of inhibitory activity of 1 against hTIM was also investigated and seems to be related with the high mobility of hTIM which would hinder the formation of a stable ligand–enzyme complex. This work has contributed to understand the mechanism of action of this kind of inhibitors and could result of great help for future rational novel drug design.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (200 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,