Article ID Journal Published Year Pages File Type
4435525 Applied Geochemistry 2016 11 Pages PDF
Abstract

•Adsorption in the Eu(III) – hydroxybenzoic acid – alumina system is studied.•Adsorption is quantified and luminescence parameters are obtained independently.•Synergistic effect of organic acids adsorption are evidenced in the ternary systems.•A ternary species is clearly shown for the p-hydrobenzoic acid.

The influence of hydroxybenzoic acids (HAHn), namely p-hydroxybenzoic acid (4-hydroxybenzoic acid, HPhbH) and protocatechuic acid (3,4-dihydroxybenzoic acid, HProtoH2), on the adsorption of europium(III) onto α,γ-Al2O3 particles is studied as a function of acid concentration. After measuring the adsorption edge of the Eu(III)/α,γ-Al2O3 binary system, and using the previously studied binary component system Eu(III)/HAHn—Moreau et al. (2015) Inorg. Chim. Acta432, 81—, and HAHn/α,γ-Al2O3—Moreau et al. (2013) Colloids Surf. A435, 97—, it is evidenced that HPhbH does not enhance Eu(III) adsorption onto α,γ-Al2O3 in the Eu(III)/HPhbH/α,γ-Al2O3 ternary system. Conversely, HProtoH2 enhances Eu(III) adsorption onto α,γ-Al2O3 in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system. Adsorption of the acids are also found higher in the Eu(III)/acid/α,γ-Al2O3 ternary systems as compared with the corresponding binary systems assessing synergetic effects. For high HPhbH concentrations, a ternary surface species involving ≡AlOH surface sites, Eu(III), and PhbH– is evidenced by time-resolved luminescence spectroscopy (TRLS). However, in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system, chemical environment of Eu(III) is found to be very close to that in the Eu(III)/HProtoH2 binary system. Ternary surface species could not be evidenced in the Eu(III)/HProtoH2/α,γ-Al2O3 ternary system with TRLS because of the very short decay time of Eu(III) in the presence of protocatechuic acid.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,