Article ID Journal Published Year Pages File Type
4435848 Applied Geochemistry 2014 15 Pages PDF
Abstract

•Mining and beneficiation process at Panasqueira mine produces mine wastes rich in metals.•Soils concentration exceed for As 20 times the Ontario reference value for agricultural soils.•Soil Enrichment Index with high values due to As, Cu also Cd and Pb.•Vegetables have values above the maximum permitted level proposed by FAO/WHO.•Risk index indicates inhabitants exposition to health risks through As, Cd, Pb intake.

The active Panasqueira mine is a tin–tungsten (Sn–W) mineralization hosted by metasediments with quartz veins rich in ferberite. The economic exploitation has been focused on wolframite, cassiterite and chalcopyrite. The mineralization also comprises several sulphides, carbonates and silver sulphosalts. The mining and beneficiation processes produces arsenic-rich mine wastes laid up in huge tailings and open air impoundments that are the main source of pollution in the surrounding area, once the oxidation of sulphides can result in the mobilization and migration of trace metals/metalloids from the mining wastes into the environment, releasing contaminants into the ecosystem.A geochemical survey was undertaken, in order to investigate the environmental contamination impact on agricultural and residential soils in S. Francisco de Assis village due to the mining activities. Rhizosphere samples, vegetables (Solanum tubersum sava and Brassica olerácea L.) which constitute an important part of the local human diet), irrigation waters and road dusts were collected in private residences in S. Francisco de Assis village. According to the Ontario guidelines ( Ministry of Environment, 2011), the Arsenic contents in the rhizosphere soils exceed 20 times the reference value for agricultural soils (11 mg kg−1). The result obtained showed that some edible plants frequently used in the region could be enriched in these metals/metalloids and may represent a serious hazard if consumed. The potatoes tend to have a preferential accumulation in the leaves and roots while in cabbages most elements have a preferential accumulation in the roots. An index of the risk for residents, due to ingesting of these metals/metalloids, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of S. Francisco de Assis village are probably exposed to some potential health risks through the intake of arsenic, cadmium and also lead via consuming their vegetables.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,