Article ID Journal Published Year Pages File Type
4437266 Applied Geochemistry 2008 11 Pages PDF
Abstract

Despite the potentially large contribution of black carbon (BC) to the recalcitrant soil organic matter pool, the molecular-level composition of aged BC has hardly been investigated. Pyrolysis-GC/MS, which provides structural information on complex mixtures of organic matter, was applied to the NaOH-extractable organic matter of an acidic colluvial soil (Atlantic ranker) sampled with high resolution (5 cm) that harbours a fire record of at least 8.5 ka. Additionally, 5 charcoal samples from selected soil layers were characterised using pyrolysis-GC/MS for comparison. Pyrolysis-GC/MS allowed distinguishing between BC and non-charred organic matter. It is argued that a large proportion of the polycyclic aromatic hydrocarbons (PAHs), benzenes and benzonitrile in the pyrolysates of the extractable organic matter, together accounting for 21–54% of total identified peak area, derived from BC. In charcoal samples, these compounds accounted for 60–98% of the pyrolysis products. The large quantity of BC in almost all samples suggested a key role of fire in Holocene soil evolution. The high C content of the soil (up to 136 g C kg−1 soil) may be attributed to the presence of recalcitrant organic C as BC, in addition to the sorptive preservation processes traditionally held responsible for long-term C storage in acid soils. Interactions between reactive Al hydroxides and BC could explain the longevity of BC in the soil. This work is the first thorough pyrolysis-GC/MS based study on ancient fire-affected organic matter.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,