Article ID Journal Published Year Pages File Type
4437296 Applied Geochemistry 2009 14 Pages PDF
Abstract

The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution–precipitation in a calcite–dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear KD approach only.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,