Article ID Journal Published Year Pages File Type
443866 Journal of Molecular Graphics and Modelling 2006 8 Pages PDF
Abstract

Molecular dynamics (MD) simulations of proteins in a lipid bilayer environment are usually undertaken with one or a few starting structures. Here we report a search protocol for systematically exploring the possible interactions in helical bundle transmembrane proteins, a frequently occurring structural motif. The search protocol correctly identifies the experimentally known structure of the dimeric human glycophorin A transmembrane domain as the lowest energy structure among five different models without any prior assumptions, whilst an identical in vacuo search fails to identify the correct structure. The lowest energy structure from the search in a lipid bilayer has a root mean square deviation of 1.1 Å to the experimental structure. We have applied the same search protocol to the unknown transmembrane structure of the oncogenic mutant ErbB-2 protein, a member of the family of epidermal growth factor receptors. Resulting structures show the role of glutamic acid hydrogen bonding and close helical packing. Water molecules may also play a key role in stabilisation of the transmembrane helix association.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,