Article ID Journal Published Year Pages File Type
4439089 Atmospheric Environment 2012 8 Pages PDF
Abstract

Although aerosols have great impacts on Surface Downward Shortwave Flux (SDSF), the relationship between aerosol loading and SDSF in global models has not yet been adequately investigated. In this study, we attempt to investigate the effects of aerosol optical thickness (AOT) and single scattering albedo (SSA) on SDSF through an integrative analysis of modeling and observation. At first, we compared the results obtained by a global aerosol model, SPRINTARS, with in-situ measurements, AERONET and BSRN. And then we estimated the impacts of AOT and SSA on SDSF through an offline radiative transfer model, Rstar. Through this study, we found that the difference in SDSF between SPRINTARS and BSRN is much larger over heavy aerosol regions than those over regions. Using the Rstar radiative transfer model, we demonstrated that the AOT difference usually has the strongest impact on the SDSF difference and the SSA difference has a moderate impact over heavy aerosol loading regions, whereas the effect of water vapor can be ignored. Finally, we generated a contour plot to demonstrate the relationships between AOT-SSA-SDSF. For example, at low AOT (e.g., 0.15), the 20 W m−2 changes in SDSF are required to make more than 0.2 changes of SSA, whereas at high AOT (e.g., 0.85), the same changes in SDSF are required to have only 0.05 changes of SSA.

► SDSF in our global aerosol model was evaluated by BSRN measurement. ► The difference in SDSF between the model and BSRN was large over heavy aerosol loading regions. ► Radiation calculation showed that the SDSF difference is primarily resulted from the AOT difference.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , ,