Article ID Journal Published Year Pages File Type
4439674 Atmospheric Environment 2011 11 Pages PDF
Abstract

Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ∼180 h of real-time measurements of fine particle and black carbon mass concentration (PM2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ∼60 trip-averaged concentrations: 190 μg m−3 PM2.5, 42 μg m−3 BC, 280 × 103 particles cm−3; GSD ∼1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m−3 for PM2.5, 85 μg m−3 for BC, and 650 × 103 particles cm−3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one’s exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (138 K)Download as PowerPoint slideHighlights► We collected ∼180 h of particle exposure measurements in New Delhi auto-rickshaws. ► In-vehicle particle concentrations high relative to New Delhi background levels. ► Roadway emissions are dominant source of in-vehicle UFP and BC exposure. ► Concentrations among highest reported for a megacity transportation setting.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , , ,