Article ID Journal Published Year Pages File Type
4440895 Atmospheric Environment 2009 8 Pages PDF
Abstract

Temperature was found to have a dramatic effect on secondary organic aerosol formation from two ozonolysis systems, cyclohexene and α-pinene. Isothermal experiments were conducted for both systems where the lowest temperature, 278 K, formed approximately 2.5–3 times and 5–6 times the SOA formed at 300 K and 318 K, respectively. Changing the cyclohexene system temperature to a different isothermal experimental set point after completion of SOA formation did not lead to sufficient condensation/evaporation to reproduce the SOA formation at other temperature set points. When the system temperature was cycled between two set points at the end of an experiment, the α-pinene system showed reversibility between the initial temperature 318 K and 300 K. For temperature cycles between the initial temperature of 300 K–318 K, an irreversible loss of mass is observed after the first heating cycle with reversibility observed between subsequent temperature cycles. The SOA formed at 278 K was reversible over a 22 K range but was unable to evaporate sufficiently to match the SOA mass formed at 300 K. Hygroscopicity measurements, taken after the completion of SOA formation, indicate that hygroscopicity of the aerosol is also a function of temperature and that the aerosol does not continue to be oxidized after initial growth is complete. The differing hygroscopicity of the semi-volatile component of the aerosol is evident during system temperature changes after completion of the experiment.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,