Article ID Journal Published Year Pages File Type
4441877 Atmospheric Environment 2009 11 Pages PDF
Abstract

Soils are a significant source for atmospheric NO. However, due to the limited number of measurements and in view of the high temporal and spatial variability of NO emissions, as originating from dependencies from a series of environmental constraints such as soil properties, meteorology or N fertilization, inventories of soil NO emissions are still highly uncertain. In this work, the agricultural DNDC model was modified and applied on site scale in order to evaluate its capability to simulate soil NO emissions. DNDC captured differences in the magnitude of NO emissions between sites, but was less successful when simulating observed day-by-day variations. However, major peak emission events, e.g. due to fertilizer application or following rainfall events, were mostly simulated. DNDC as well as its forest version Forest-DNDC were finally linked to a GIS to calculate NO emissions from agricultural and forest soils across Europe. Using the same databases for agricultural soils, we also compared our estimate with other commonly used methodologies (Skiba-EMEP/CORINAIR, Yienger and Levy, Stehfest and Bouwman). A canopy reduction factor was not applied in this study. Estimates for NO emissions for agricultural soils for EU15 states varied in a range of 48.9–189.8 kt NO-N for the year 2000 depending on the approach used (Yienger and Levy > DNDC > Stehfest and Bouwman > Skiba-EMEP/CORINAIR). For forests, using the model Forest-DNDC as the only approach, we calculated soil NO emissions to be 75.1 kt NO-N yr−1. The results show that soils in EU15 states are significant sources of atmospheric NO, though the share of soil NO emissions on total NOx emissions (incl. NOx emissions by combustion processes) in EU15 was only 4–6%. Given that soil NO emissions are largely driven by the availability of inorganic nitrogen (fertilization) and temperature, emissions are larger during the vegetation period. Especially during early summer when fertilizer-induced NO emissions from agricultural soils are peaking, the contribution of soil emissions to total NOx emissions may most likely be well above 10%.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , ,