Article ID Journal Published Year Pages File Type
4442128 Atmospheric Environment 2009 7 Pages PDF
Abstract

A one-particle Lagrangian model for continuous releases in the non-Gaussian inhomogeneous turbulence of a canopy layer is derived based on the fluctuating plume model of Franzese [2003. Lagrangian stochastic modeling of a fluctuating plume in the convective boundary layer. Atmos. Environ. 37, 1691–1701.]. The model equations are filtered by a time-dependent low-pass filter applied to the turbulent kinetic energy in order to obtain a fluctuating plume model able to simulate the vertical meandering of the cloud centroid through non-stationary Lagrangian equations. The model satisfies the well-mixed condition. The relative dispersion of particles and the concentration fluctuation statistics of a passive tracer inside a modeled vegetal canopy are studied. The probability density function of the concentration relative to the plume centroid is parameterized and the mean and variance fields of concentration are simulated and compared with wind-tunnel data and numerical simulations. A skewed, reflected probability density function for the vertical position of the plume centroid is considered.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,