Article ID Journal Published Year Pages File Type
4442814 Atmospheric Environment 2007 10 Pages PDF
Abstract

The emission of formaldehyde is an important factor in the evaluation of the environmental and health effects of wood-based board materials. This article gives a comparison between commonly used European test methods: chamber method [EN 717-1, 2004. Wood-based panels—determination of formaldehyde release—Part 1: formaldehyde emission by the chamber method. European Standard, October 2004], gas analysis method [EN 717-2, 1994. Wood-based panels—determination of formaldehyde release—Part 2: formaldehyde release by the gas analysis method, European Standard, November 1994], flask method [EN 717-3, 1996. Wood-based panels—determination of formaldehyde release—Part 3: formaldehyde release by the flask method, European Standard, March 1996], perforator method [EN 120, 1993. Wood based panels—determination of formaldehyde content—extraction method called perforator method, European Standard, September 1993], Japanese test methods: desiccator methods [JIS A 1460, 2001. Building boards. Determination of formaldehyde emission—desiccator method, Japanese Industrial Standard, March 2001 and JAS MAFF 233, 2001] and small chamber method [JIS A 1901, 2003. Determination of the emission of volatile organic compounds and aldehydes for building products—small chamber method, Japanese Industrial Standard, January 2003], for solid wood, particleboard, plywood and medium density fiberboard.The variations between the results from different methods can partly be explained by differences in test conditions. Factors like edge sealing, conditioning of the sample before the test and test temperature have a large effect on the final emission result. The Japanese limit for F **** of 0.3 mg l−1 (in desiccator) for particleboards was found to be equivalent to 0.04 mg m−3 in the European chamber test and 2.8 mg per 100 g in the perforator test. The variations in inter-laboratory tests are much larger than in intra-laboratory tests; the coefficient of variation is 16% and 6.0% for the chamber method, 25% and 3.5% for the gas analysis method and 15% and 5.2% for the desiccator method.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , ,