Article ID Journal Published Year Pages File Type
4443858 Atmospheric Environment 2007 5 Pages PDF
Abstract

The previously developed theoretical model [Gao, Y., Chen, S.B., Yu, L.E., 2006. Efflorescence relative humidity for ammonium sulfate particles. Journal of Physical Chemistry A, 110, 7602–7608], which has successfully predicted the efflorescence relative humidity (ERH) of ammonium sulfate ((NH4)2SO4) particles at room temperature, is employed to estimate the ERH of sodium chloride (NaCl) particles in sizes ranging from 6 nm to 20 μm. The theoretical predictions well agree with the reported experimental data in literatures. When the NaCl particles are larger than 70 nm, the ERH decreases with decreasing dry particle sizes, and reach a minimum around 44% RH, otherwise the ERH increases with decreasing dry particle sizes (<70 nm) because of the Kelvin effect. Compared with (NH4)2SO4 particles, the Kelvin effect on ERH is stronger for NaCl particles smaller than 30 nm, while the dry particle size exerts weaker influence on NaCl particles larger than 70 nm.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,