Article ID Journal Published Year Pages File Type
4444000 Atmospheric Environment 2006 11 Pages PDF
Abstract

Octanol–air partition coefficients (KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[a,h]anthracene) to 15.1 (benz[a]anthracene) of values calculated as the ratio of octanol–water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures (PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior.Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas–particle partition coefficients (Kp) were compared to the predictions of KOA absorption and KSA (soot–air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,