Article ID Journal Published Year Pages File Type
4444215 Atmospheric Environment 2007 14 Pages PDF
Abstract

A global three-dimensional (3D) transport–dispersion model was used to simulate Krypton-85 (85Kr) background concentrations at five sampling locations along the US east coast during 1982–1983. The samplers were established to monitor the 85Kr plume downwind of the Savannah river plant (SRP), a nuclear fuel reprocessing facility. The samplers were located 300–1000 km downwind of the SRP. In the original analyses of the measurements, a constant background concentration, representing an upper-limit and different for each sampling station, was subtracted from the measurements to obtain the part of the measurement representing the SRP plume. The use of a 3D global model, which includes all major 85Kr sources worldwide, was able to reproduce the day-to-day concentration background variations at the sampling locations with correlation coefficients of 0.36–0.46. These 3D model background predictions, without including the nearby SRP source, were then subtracted from the measured concentrations at each sampler, the result representing the portion of the measurement that can be attributed to emissions from the SRP. The revised plume estimates were a factor of 1.3–2.4 times higher than from the old method using a constant background subtraction. The greatest differences in the SRP plume estimates occurred at the most distant sampling stations.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
,