Article ID Journal Published Year Pages File Type
4444334 Atmospheric Environment 2006 26 Pages PDF
Abstract

Organic substances have been recognized as active cloud condensation and ice formation nuclei for several decades. In some regions of the world, these organic compounds (OC) consist predominantly of suspended matter mass, which can have local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. However, due to the complexity of their chemical nature, the significance of organic molecules in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. The aim of this review paper is to assess the current state of knowledge regarding the role of organic aerosols (including bioaerosols) as cloud condensation nuclei (CCN), as well as to compare the existing theoretical and experimental data. It seems that classical Kohler theory does not adequately describe the hygroscopic behaviour of predominantly identified organic CCN such as pure dicarboxylic acid particles. Factors such as surface tension, impurities, volatility, morphology, contact angle, deliquescence, and the oxidation process should be considered in the theoretical prediction of the CCN ability of OC and the interpretation of experimental results. Major identified constituents of organic CCN, their main sources and their CCN properties will be herein reviewed. We will also discuss areas of uncertainty and expose key issues deserving of future research.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, ,