Article ID Journal Published Year Pages File Type
4444603 Atmospheric Environment 2006 15 Pages PDF
Abstract

The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k–ε model, the RNG k−ε model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models.The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,