Article ID Journal Published Year Pages File Type
444523 Journal of Molecular Graphics and Modelling 2010 8 Pages PDF
Abstract

Unfolding behavior of glycosylated- and unglycosylated proteinase inhibitor Pars intercerebralis major peptide C (PMPC) at 350 K were traced with molecular dynamics simulations using the CHARMM program. The fucosylated PMPC (FPMPC) possesses a nearly identical protein structure with PMPC, differing only by the presence of a single fucose residue linked to Thr9 in the PMPC. Attachment of a monomeric fucose residue to the Thr9 in PMPC resulted in a change of the denaturing process of FPMPC. Simulations showed that the unfolding of PMPC involved significant weakening of non-local interactions whereas fucosylation led FPMPC to preserve the non-local interactions, even in its denatured form. Even in simulations over 16 ns at 350 K, FPMPC remained relatively stable in a less denatured conformation. However, the conformation of PMPC transformed to a fully unfolded state within 5 ns in the simulation at 350 K. This difference was due to the formation of fucose-mediated hydrogen bonds and non-local contacts by the attached fucose residue of FPMPC. In the case of FPMPC, fucosyl residue was involved in maintaining a rigid β-sheet cluster through interaction with the hydrogen bond network. These high-temperature unfolding MD simulations provide a theoretical basis for a previous experimental work in which FPMPC showed stable unfolding thermodynamics compared to unfucosylated PMPC, suggesting that single fucosylation induces conformational stabilization of PMPC by tertiary contacts.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,