Article ID Journal Published Year Pages File Type
4445486 Atmospheric Environment 2005 15 Pages PDF
Abstract

We have analysed in detail four selected episodes involving substantially high concentrations of PM10 that occurred in Oslo on 4–10 January 2003, in Helsinki on 3–14 April 2002, in London on 18–27 February 2003 and in Milan on 14–19 December 1998. We have also utilised a more extensive dataset containing relevant information regarding 21 episodes from seven cities in six countries. The four episodes analysed in detail were recently occurring cases that were at least partly caused by various local emission sources. In particular, we have addressed the evolution of the measured concentrations in terms of the measured, meteorologically pre-processed and predicted (using numerical weather prediction models and a meso-scale meteorological model) meteorological variables. All the four episodes addressed were associated with areas of high pressure (Oslo, Helsinki and London) or a high-pressure ridge (Milan). The best meteorological prediction variables were found to be the temporal evolution of the temperature inversions and atmospheric stability and, in some of the cases, wind speed. Strong ground-based or slightly elevated temperature inversions prevailed in the course of the episodes in Oslo, Helsinki and Milan, and there was a slight ground-based inversion also in London; their occurrence coinciding with the highest PM10 concentrations. The same result was also obtained by considering an additional set of seven PM10 episodes from the larger dataset. The inversions in Oslo and Milan were mainly caused by the advection of warmer air above a relatively colder surface, and that in Helsinki by radiation cooling of snow-covered ground. It was also found that a low wind speed is not necessarily a good indicator of episodes; this is the case, e.g., in the Po valley, due to the frequently occurring calm and low wind speed conditions there.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , , , , , , ,