Article ID Journal Published Year Pages File Type
444646 Journal of Molecular Graphics and Modelling 2008 7 Pages PDF
Abstract

Fully atomistic molecular dynamics (MD) simulations were used to predict the properties of diglycidyl ether of bisphenol F (DGEBF) crosslinked with curing agent diethyltoluenediamine (DETDA). This polymer is a commercially important epoxy resin and a candidate for applications in nanocomposites. The calculated properties were density and bulk modulus (at near-ambient pressure and temperature) and glass transition temperature (at near-ambient pressure). The molecular topology, degree of curing, and MD force-field were investigated as variables. The models were created by densely packing pre-constructed oligomers of different composition and connectivity into a periodic simulation box. For high degrees of curing (greater than 90%), the density was found to be insensitive to the molecular topology and precise value of degree of curing. Of the two force-fields that were investigated, cff91 and COMPASS, the latter clearly gave more accurate values for the density as compared to experiment. In fact, the density predicted by COMPASS was within 6% of reported experimental values for the highly crosslinked polymer. The predictions of both force-fields for glass transition temperature were within the range of reported experimental values, with the predictions of cff91 being more consistent with a highly cured resin.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,