Article ID Journal Published Year Pages File Type
444760 Journal of Molecular Graphics and Modelling 2007 15 Pages PDF
Abstract

The first step of the reaction catalysed by the enzyme citrate synthase is studied here with high level combined quantum mechanical/molecular mechanical (QM/MM) methods (up to the MP2/6-31+G(d)//6-31G(d)/CHARMM level). In the first step of the reaction, acetyl-CoA is deprotonated by Asp375, producing an intermediate, which is the nucleophile for attack on the second substrate, oxaloacetate, prior to hydrolysis of the thioester bond of acetyl-CoA and release of the products. A central question has been whether the nucleophilic intermediate is the enolate of acetyl-CoA, the enol, or an ‘enolic’ intermediate stabilized by a ‘low-barrier’ hydrogen bond with His274 at the active site. The imidazole sidechain of His274 is neutral, and donates a hydrogen bond to the carbonyl oxygen of acetyl-CoA in substrate complexes. We have investigated the identity of the nucleophilic intermediate by QM/MM calculations on the substrate (keto), enolate, enol and enolic forms of acetyl-CoA at the active site of citrate synthase. The transition states for proton abstraction from acetyl-CoA by Asp375, and for transfer of the hydrogen bonded proton between His274 and acetyl-CoA have been modelled approximately. The effects of electron correlation are included by MP2/6-31G(d) and MP2/6-31+G(d) calculations on active site geometries produced by QM/MM energy minimization. The results do not support the hypothesis that a low-barrier hydrogen bond is involved in catalysis in citrate synthase, in agreement with earlier calculations. The acetyl-CoA enolate is identified as the only intermediate consistent with the experimental barrier for condensation, stabilized by conventional hydrogen bonds from His274 and a water molecule.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,