Article ID Journal Published Year Pages File Type
44499 Applied Catalysis A: General 2006 9 Pages PDF
Abstract

The effect of the reduction temperature has been studied on ceria-supported bimetallic platinum–zinc catalysts prepared from H2PtCl6 and Pt(NH3)4(NO3)2 as the platinum precursors and Zn(NO3)2 as the zinc precursor. The catalysts have been characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS), and their catalytic behavior has been evaluated in the vapor-phase hydrogenation of toluene and of crotonaldehyde (2-butenal) after reduction at low (473 K) and high (773 K) temperatures. The increase in the reduction temperature produces a strong decrease in the catalytic activity for toluene hydrogenation in both systems, but an important increase of activity for crotonaldehyde hydrogenation, which is more evident for the chlorine-free catalyst. The selectivity towards the hydrogenation of the carbonyl bond to yield the unsaturated alcohol (crotyl alcohol, 2-buten-1-ol) also increases after reduction at high temperature, being somewhat higher for the Cl-containing catalyst. The results are discussed in terms of differences in surface composition of the catalysts.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,