Article ID Journal Published Year Pages File Type
4451115 Atmospheric Research 2008 7 Pages PDF
Abstract

Air quality modeling can help to improve understanding of scale interactions related to meteorology, transport, emissions, formation, removal, and other processes taking place at local, urban, and regional scales. For the local scale, we used the coupling of a street canyon model with a Gaussian dispersion model to study the interactions of emissions and concentrations in urban streets and surrounding urban neighborhoods. The model combination was applied to a city quarter in Ghent, Belgium, and showed that up to 40% of the PM2.5 concentrations inside street canyons were caused by emissions from the surrounding streets. For the urban scale, the AURORA model has been used successfully in assessments of urban air quality for entire cities or urbanized areas. It has been applied to the Ruhr area in Germany to evaluate the impact of compact or polycentric cities versus the impact of urban sprawl developments. Results for ozone and PM10 showed that compact city structures may have more adverse effects in terms of air pollution exposure. For the regional scale, the EUROS model was used to study the urban and regional-scale interactions that are important in simulating concentrations of ozone, PM2.5, and PM10. It has been applied to study seasonal changes in aerosol concentrations in Flanders. High secondary aerosol concentrations were found during summer. This contribution was related to large contributions from outside the region, showing the importance of the continental scale when studying regional air quality problems.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , ,