Article ID Journal Published Year Pages File Type
4451501 Atmospheric Research 2006 16 Pages PDF
Abstract

The growth of critical clusters is discussed in the paper according to the classical and molecular dynamics (MD) approaches. A new formula for molecule numbers in critical clusters has been derived within the framework of the classical approach. A set of equations controlling the early stage of growth in a neighborhood of a critical size is presented. As far as molecular dynamics simulation is concerned, a computational technique based on the DL_POLY code is described in brief. Computation results are presented concerning cluster formation of H2O vapor, distribution of clusters versus time, cluster growth and radial density distribution of isolated clusters. A comparison with the classical results is made for a case of dense vapor, where the mechanism of strong condensation is predominant. The Hertz–Knudsen formula seems to be verified by the molecular dynamics results.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,