Article ID Journal Published Year Pages File Type
4451632 International Journal of Naval Architecture and Ocean Engineering 2016 16 Pages PDF
Abstract

This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Oceanography
Authors
, ,