Article ID Journal Published Year Pages File Type
4453194 Journal of Aerosol Science 2007 21 Pages PDF
Abstract

Numerical studies of transport and deposition of nano- and micro-particles in turbulence flow field have been studied in the past few decades. In most current industrial applications, Reynolds averaged turbulence models were used due to its relative simplicity and computational efficiency. In this work, a series of numerical simulations were conducted to study the transport and deposition of nano- and micro-particles in a turbulent duct flow using different turbulence models. Commercial software (FLUENTTM 6.1.22) was used for turbulence mean flow simulation. Simulations of the instantaneous turbulence fluctuation with and without turbulence near wall correction, and particle trajectory analysis were performed with the in-house PARTICLE (object-oriented C++) code, as well as with FLUENTTM code with and the use of user's defined subroutines. The simulation results for different cases were compared with the available experimental data, and the accuracy of various approaches was evaluated. In addition, the importance of turbulence model, boundary conditions, and turbulence fluctuation particularly near wall on particle transport and deposition were carefully evaluated. It was shown that when sufficient care was given to the modeling effort, the particle deposition rates could be predicted with reasonable accuracy. The presented results could provide guidelines for selecting appropriate procedure for simulating nano- and micro-particle transport and deposition in various applications.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, ,