Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4454088 | Journal of Environmental Sciences | 2015 | 9 Pages |
Using a liquid–solid phase inversion method, a hybrid matrix poly(vinylidene fluoride) (PVDF) membrane was prepared with alumina (Al2O3) nanoparticle addition. Pd/Fe nanoparticles (NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid (DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.