Article ID Journal Published Year Pages File Type
4455017 Journal of Environmental Sciences 2012 6 Pages PDF
Abstract

A mercury biosensor was constructed by integrating biosensor genetic elements into E. coli JM109 chromosome in a single copy number, using the attP/attB recombination mechanism of γ phage. The genetic elements used include a regulatory protein gene (merR) along with operator/promoter (O/P) derived from the mercury resistance operon from pDU1358 plasmid of Serratia marcescens. The expression of reporter gene gfp is also controlled by merR/O/P. Integration of the construct into the chromosome was done to increase the stability and precision of the biosensor. This biosensor could detect Hg(II) ions in the concentration range of 100-1700 nmol/L, and manifest the result as the expression of GFP. The GFP expression was significantly different (P ⩽ 0.05) for each concentration of inducing Hg(II) ions in the detection range, which reduces the chances of misinterpretation of results. A model using regression method was also derived for the quantification of the concentration of Hg(II) in water samples.

Related Topics
Life Sciences Environmental Science Environmental Science (General)