Article ID Journal Published Year Pages File Type
4455897 Journal of Environmental Sciences 2010 6 Pages PDF
Abstract

An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status.

Related Topics
Life Sciences Environmental Science Environmental Science (General)