Article ID Journal Published Year Pages File Type
4456603 Journal of Environmental Sciences 2007 6 Pages PDF
Abstract

The catalyst of CuOx/Al2O3 was prepared by the dipping-sedimentation method using γ-Al2O3 as a supporter. CuO and Cu2O were loaded on the surface of Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In the presence of CuOx/Al2O3, the microwave-induced chlorine dioxide (ClO2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol. The factors influencing phenol removal were investigated and the results showed that microwave-induced ClO2-CuOx/Al2O3 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage, extensive pH range. Under a given condition (ClO2 concentration 80 mg/L, microwave power 50 W, contact time 5 min, catalyst dosage 50 g/L, pH 9), phenol removal percentage approached 92.24%, corresponding to 79.13% of CODCr removal. The removal of phenol by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics. Compared with traditional ClO2 oxidation, ClO2 catalytic oxidation and microwave-induced ClO2 oxidation, microwave-induced ClO2 catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for the removal of phenol wastewater.

Related Topics
Life Sciences Environmental Science Environmental Science (General)