Article ID Journal Published Year Pages File Type
4456711 Journal of Environmental Sciences 2008 11 Pages PDF
Abstract

The proteomic analysis of rice (Oryza sativa L.) roots and leaves responding to1,2,4-trichlorobenzene (TCB) stress was carried out by two dimensional gel electrophoresis, mass spectrometric (MS), and protein database analysis. The results showed that 5 mg/L TCB stress had a significant effect on global proteome in rice roots and leaves. The analysis of the category and function of TCB stress inducible proteins showed that different kinds of responses were produced in rice roots and leaves, when rice seedlings were exposed to 5mg/L TCB stress. Most responses are essential for rice defending the damage of TCB stress. These responses include detoxication of toxic substances, expression of pathogenesis-related proteins, synthesis of cell wall substances and secondary compounds, regulation of protein and amino acid metabolism, activation of methionine salvage pathway, and also include osmotic regulation and phytohormone metabolism. Comparing the TCB stress inducible proteins between the two cultivars, the β-glucosidase and pathogenesis-related protein family 10 proteins were particularly induced by TCB stress in the roots of rice cultivar (Oryza sativa L.) Aizaizhan, and the glutathione S-transferase and aci-reductone dioxygenase 4 were induced in the roots of rice cultivar Shanyou 63. This may be one of the important mechanisms for Shanyou 63 having higher tolerance to TCB stress than Aizaizhan.

Related Topics
Life Sciences Environmental Science Environmental Science (General)