Article ID Journal Published Year Pages File Type
4459341 Remote Sensing of Environment 2012 14 Pages PDF
Abstract

Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western U.S. rivers to control introduced shrubs in the genus Tamarix. Part of the motivation to control Tamarix is to salvage water for human use. Information is needed on the impact of beetles on Tamarix seasonal leaf production and subsequent water use over wide areas and multiple cycles of annual defoliation. Here we combine ground data with high resolution phenocam imagery and moderate resolution (Landsat) and coarser resolution (MODIS) satellite imagery to test the effects of beetles on Tamarix evapotranspiration (ET) and leaf phenology at sites on six western rivers. Satellite imagery covered the period 2000 to 2010 which encompassed years before and after beetle release at each study site. Phenocam images showed that beetles reduced green leaf cover of individual canopies by about 30% during a 6–8 week period in summer, but plants produced new leaves after beetles became dormant in August, and over three years no net reduction in peak summer leaf production was noted. ET was estimated by vegetation index methods, and both Landsat and MODIS analyses showed that beetles reduced ET markedly in the first year of defoliation, but ET recovered in subsequent years. Over all six sites, ET decreased by 14% to 15% by Landsat and MODIS estimates, respectively. However, results were variable among sites, ranging from no apparent effect on ET to substantial reduction in ET. Baseline ET rates before defoliation were low, 394 mm yr− 1 by Landsat and 314 mm yr− 1 by MODIS estimates (20–25% of potential ET), further constraining the amount of water that could be salvaged. Beetle–Tamarix interactions are in their early stage of development on this continent and it is too soon to predict the eventual extent to which Tamarix populations will be reduced. The utility of remote sensing methods for monitoring defoliation was constrained by the small area covered by each phenocam image, the low temporal resolution of Landsat, and the low spatial resolution of MODIS imagery. Even combined image sets did not adequately reveal the details of the defoliation process, and remote sensing data should be combined with ground observations to develop operational monitoring protocols.

► Satellite imagery shows variable responses of Tamarix shrubs to biocontrol beetles. ► Baseline evapotranspiration of Tamarix by MODIS is only 329 mm yr− 1 across rivers. ► Phenocams show that Tamarix shrubs quickly recover from summer defoliation events. ► Low evapotranspiration and limited defoliation limit potential water salvage.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , , , ,