Article ID Journal Published Year Pages File Type
4459610 Remote Sensing of Environment 2010 13 Pages PDF
Abstract

Synthetic Aperture Radar (SAR) data has been investigated to determine the relationship between burn severity and interferometric coherence at three sites affected by forest fires in a hilly Mediterranean environment. Repeat-pass SAR images were available from the TerraSAR-X, ERS-1/2, Envisat ASAR and ALOS PALSAR sensors. Coherence was related to measurements of burn severity (Composite Burn Index) and remote sensing estimates expressed by the differenced normalized burn ratio (dNBR) index. In addition, the effects of topography and weather on coherence estimates were assessed. The analysis for a given range of local incidence angle showed that the co-polarized coherence increases with the increase of burn severity at X- and C-band whereas cross-polarized coherence was practically insensitive to burn severity. Higher sensitivity to burn severity was found at L-band for both co- and cross-polarized channels. The association strength between coherence and burn severity was strongest for images acquired under stable, dry environmental conditions. When the local incidence angle is accounted for the determination coefficients increased from 0.6 to 0.9 for X- and C-band. At L-band the local incidence angle had less influence on the association strength to burn severity.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , ,