Article ID Journal Published Year Pages File Type
4459614 Remote Sensing of Environment 2010 9 Pages PDF
Abstract

Plant structure and chlorophyll content strongly affect rates of photosynthesis. Rapid, objective, and repeatable methods are needed to measure these vegetative parameters to advance our understanding and modeling of plant ecophysiological processes. Terrestrial laser scanners (TLS) can be used to measure structural and potentially chemical properties of objects by quantifying the x,y,z coordinates and intensity of laser light, respectively, returned from an object's surface. The objective of this study was to determine the potential usefulness of TLS with a green (532 nm) laser to simultaneously measure the spatial distribution of chlorophyll a and b content (Chlab), leaf area (LA), and leaf angle (LAN). The TLS measurements were obtained from saplings of two tree species (Quercus macrocarpa and Acer saccharum) and from an angle-adjustable cardboard surface. The green laser return intensity value was strongly correlated with wet-chemically determined Chlab (r2 = 0.77). Strong agreement was shown between measured and TLS-derived LA (r2 = 0.95, intercept = − 1.43, slope = 0.97). The TLS derived LANs of both species followed a plagiophile LAN distribution, and the measured angles of the cardboard surface allowed us to quantify that these LAN values were strongly correlated with TLS derived angles (r2 = 1.0, intercept and slope = 0.98). Our results show that terrestrial laser scanners are feasible for simultaneous measurement of LA, LAN, and Chlab in simple canopies of small broadleaved plants. Further research is needed in more complex and larger canopies.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , ,