Article ID Journal Published Year Pages File Type
4459730 Remote Sensing of Environment 2010 13 Pages PDF
Abstract

Leaf Area Index (LAI) is one of the most important variables characterizing land surface vegetation and dynamics. Many satellite data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been used to generate LAI products. It is important to characterize their spatial and temporal variations by developing mathematical models from these products. In this study, we aim to model MODIS LAI time series and further predict its future values by decomposing the LAI time series of each pixel into several components: trend, intra-annual variations, seasonal cycle, and stochastic stationary or irregular parts. Three such models that can characterize the non-stationary time series data and predict the future values are explored, including Dynamic Harmonics Regression (DHR), STL (Seasonal-Trend Decomposition Procedure based on Loess), and Seasonal ARIMA (AutoRegressive Intergrated Moving Average) (SARIMA). The preliminary results using six years (2001–2006) of the MODIS LAI product indicate that all these methods are effective to model LAI time series and predict 2007 LAI values reasonably well. The SARIMA model gives the best prediction, DHR produces the smoothest curve, and STL is more sensitive to noise in the data. These methods work best for land cover types with pronounced seasonal variations.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , ,