Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4459805 | Remote Sensing of Environment | 2010 | 12 Pages |
The predictability of the vegetation cycle is analyzed as a function of the spatial scale over West Africa during the period 1982–2004. The NDVI–AVHRR satellite data time series are spatially aggregated over windows covering a range of sizes from 8 × 8 km2 to 1024 × 1024 km2. The times series are then embedded in a low-dimensional pseudo-phase space using a system of time delayed coordinates. The correlation dimension (Dc) and entropy of the underlying vegetation dynamics, as well as the noise level (σ) are extracted from a nonlinear analysis of the time series. The horizon of predictability (HP) of the vegetation cycle defined as the time interval required for an n% RMS error on the vegetation state to double (i.e. reach 2n% RMS) is estimated from the entropy production. Compared to full resolution, the intermediate scales of aggregation (in the range of 64 × 64 km2 to 256 × 256 km2) provide times series with a slightly improved signal to noise ratio, longer horizon of predictability (about 2 to 5 decades) and preserve the most salient spatial patterns of the vegetation cycle. Insights on the best aggregation scale and on the expected vegetation cycle predictability over West Africa are provided by a set of maps of the correlation dimension (Dc), the horizon of predictability (HP) and the level of noise (σ).