Article ID Journal Published Year Pages File Type
4459950 Remote Sensing of Environment 2009 13 Pages PDF
Abstract

This paper presents the retrieval method L-APOM which aims at characterizing the microphysical and optical properties of aerosol plumes from hyperspectral images with high spatial resolution. The inversion process is divided into three steps: estimation of the ground reflectance below the plume, characterization of the standard atmosphere (gases and background aerosols) and estimation of the plume aerosols properties. As using spectral information only is not sufficient to insure uniqueness of solutions, original constraints are added by assuming slow spatial variations of particles properties within the plume. The whole inversion process is validated on a large set of simulated images and reveals to remain accurate even in the worst cases of noise: relative estimation errors of aerosol properties remain between 10% and 20% in most cases. L-APOM is applied on a real AVIRIS hyperspectral image of a biomass burning plume for which in situ measurements are available. Retrieved properties appear globally consistent with measurements.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , ,