Article ID Journal Published Year Pages File Type
4460132 Remote Sensing of Environment 2009 10 Pages PDF
Abstract

Land surface temperature (LST) and emissivity are key parameters in estimating the land surface radiation budget, a major controlling factor of global climate and environmental change. In this study, Terra Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and Aqua MODerate resolution Imaging Spectroradiometer (MODIS) Collection 5 LST and emissivity products are evaluated using long-term ground-based longwave radiation observations collected at six Surface Radiation Budget Network (SURFRAD) sites from 2000 to 2007. LSTs at a spatial resolution of 90 m from 197 ASTER images during 2000–2007 are directly compared to ground observations at the six SURFRAD sites. For nighttime data, ASTER LST has an average bias of 0.1 °C and the average bias is 0.3 °C during daytime. Aqua MODIS LST at 1 km resolution during nighttime retrieved from a split-window algorithm is evaluated from 2002 to 2007. MODIS LST has an average bias of − 0.2 °C. LST heterogeneity (defined as the Standard Deviation, STD, of ASTER LSTs in 1 × 1 km2 region, 11 × 11 pixel in total) and instrument calibration error of pyrgeometer are key factors impacting the ASTER and MODIS LST evaluation using ground-based radiation measurements. The heterogeneity of nighttime ASTER LST is 1.2 °C, which accounts for 71% of the STD of the comparison, while the heterogeneity of the daytime LST is 2.4 °C, which accounts for 60% of the STD. Collection 5 broadband emissivity is 0.01 larger than that of MODIS Collection 4 products and ASTER emissivity. It is essential to filter out the abnormal low values of ASTER daily emissivity data in summer time before its application.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, ,