Article ID Journal Published Year Pages File Type
4460242 Remote Sensing of Environment 2008 16 Pages PDF
Abstract

Binary discriminant functions are often used to identify changed area through time in remote sensing change detection studies. Traditionally, a single change-enhanced image has been used to optimize the binary discriminant function with a few (e.g., 5–10) discrete thresholds using a trial-and-error method. Im et al. [Im, J., Rhee, J., Jensen, J. R., & Hodgson, M. E. (2007). An automated binary change detection model using a calibration approach. Remote Sensing of Environment, 106, 89–105] developed an automated calibration model for optimizing the binary discriminant function by autonomously testing thousands of thresholds. However, the automated model may be time-consuming especially when multiple change-enhanced images are used as inputs together since the model is based on an exhaustive search technique. This paper describes the development of a computationally efficient search technique for identifying optimum threshold(s) in a remote sensing spectral search space. The new algorithm is based on “systematic searching.” Two additional heuristic optimization algorithms (i.e., hill climbing, simulated annealing) were examined for comparison. A case study using QuickBird and IKONOS satellite imagery was performed to evaluate the effectiveness of the proposed algorithm. The proposed systematic search technique reduced the processing time required to identify the optimum binary discriminate function without decreasing accuracy. The other two optimizing search algorithms also reduced the processing time but failed to detect a global maxima for some spectral features.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , ,