Article ID Journal Published Year Pages File Type
4460332 Remote Sensing of Environment 2009 4 Pages PDF
Abstract

The theory of spectral invariants, or ‘p-theory’, states that the canopy scattering coefficient at any wavelength can be related to the leaf scattering coefficient at the same wavelength through a spectrally invariant canopy structural parameter — the photon recollision probability p. The p-theory has recently gained interest in the vegetation reflectance modeling community as an efficient tool for characterizing scattering in clumped foliage structures. In this short communication paper, we report empirical data of the relationship of canopy leaf area index (LAI), diffuse non-interceptance and photon recollision probability for 1032 coniferous and broadleaved forest plots measured in Finland. Our results indicate that the relationship of canopy LAI and diffuse non-interceptance is near-universal in boreal stands i.e. it does not depend on stand age, tree species or growth conditions. This allows improving parameterizations used by canopy reflectance models which utilize the photon recollision probability concept. Our results also suggest that establishing species-specific p-LAI functions for northern European forests requires more research on the influence of micro- and macroscale foliage grouping on photon recollision probability.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , ,