Article ID Journal Published Year Pages File Type
4460692 Remote Sensing of Environment 2007 9 Pages PDF
Abstract

We observed surface water in a wetland, imaging in the subsolar or specular direction the exceptionally bright specular reflection of sunlight at a ground resolution of 0.3 m. We then simulated ground resolutions between 1.7 m and 1.2 km through aggregation of the 0.3 m pixels. Contrary to the expectations of some of our colleagues in the wetlands community, for these data, the accuracy of spectral mixture analysis (SMA) estimates of surface water increases as pixel ground footprint size increases. Our results suggest that regional to global scale assessments of flooded landscapes and wetlands that do not involve issues requiring 1 m resolution per se may be addressed with acceptable accuracy by applying SMA techniques to low resolution imagery. Our results indicate within-pixel estimates of surface water area derived from data measured by subsolar viewing sensors with large ground pixel footprints, such as satellite POLarization and Directionality of Earth Radiance (POLDER) data, may be highly accurate under strong surface wind conditions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , ,