Article ID Journal Published Year Pages File Type
4460963 Remote Sensing of Environment 2006 12 Pages PDF
Abstract

This work examines the application of a geometric-optical canopy reflectance model to provide measures of woody shrub abundance in desert grasslands at the landscape scale. The approach is through inversion of the non-linear simple geometric model (SGM) against 631 nm multi-angle reflectance data from the Compact High Resolution Imaging Spectrometer (CHRIS) flown on the European Space Agency's Project for On-Board Autonomy (Proba) satellite. Separation of background and upper canopy contributions was effected by a linear scaling of the parameters of the Walthall bidirectional reflectance distribution function model with the weights of a kernel-driven model. The relationship was calibrated against a small number of sample locations with highly contrasting background/upper canopy configurations, before application over an area of about 25 km2. The results show that with some assumptions, the multi-angle remote sensing signal from CHRIS/Proba can be explained in terms of a combined soil–understory background response and woody shrub cover and exploited to map this important structural attribute of desert grasslands.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,