Article ID Journal Published Year Pages File Type
4462481 Comptes Rendus Geoscience 2012 18 Pages PDF
Abstract
La connaissance des mécanismes et des vitesses de dissolution et la croissance des minéraux, particulièrement à proximité de l'équilibre, est indispensable pour décrire, à toutes les échelles spatio-temporelles, les processus d'altération à la surface des continents et leur impact sur le budget du gaz carbonique et sur le climat. Les concepts de la chimie de coordination de surface (SC) couplés avec la théorie de l'état transitoire (TST) fournissent un cadre théorique efficace pour décrire la dissolution des minéraux dans une large gamme de composition des fluides, d'affinité chimique des réactions et de température. Depuis plusieurs années, il y a cependant un débat animé sur les mérites comparés des modèles SC/TST et des théories classiques de la croissance cristalline pour rendre compte avec précision de la dissolution et la croissance des minéraux à proximité de l'équilibre. Dans cette étude, on analyse des résultats récents obtenus dans notre laboratoire sur la dissolution et croissance à proximité de l'équilibre d'oxydes, hydroxydes, carbonates et silicates grâce à la mise en œuvre de techniques macroscopiques et microscopiques complémentaires comme la microscopie à force atomique hydrothermale, les cellules potentiométriques (électrode à hydrogène) hydrothermales et les réacteurs fermés ou à circulation. Nos études montrent que la dissolution et croissance de poudres d'hydroxydes, kaolinite et hydromagnésite de surface BET élevées suivent étroitement les lois cinétiques dérivées de la SC/TST, avec une variation linéaire des vitesses de dissolution et croissance en fonction de l'état de saturation du fluide (Ω), même à très grande proximité de l'équilibre (|ΔG| < 500 J/mol). On observe ces lois linéaires, parce qu'un nombre suffisant de sites réactifs (au niveau des kinks, gradins, arêtes…) est disponible sur les faces de ces minéraux exposés aux fluides, permettant ainsi aux réactions de dissolution et/ou de croissance de se produire par attache/détachement direct et réversible des réactifs à la surface. En revanche, dans le cas de minéraux de faible surface spécifique, comme la magnésite, le quartz ou les feldspaths, beaucoup moins de sites actifs sont disponibles pour la croissance et la dissolution. Les vitesses de réaction de ces minéraux à proximité de l'équilibre en fonction de Ω peuvent suivre des lois très variables (de linéaire à fortement sigmoïdale), suivant le traitement subi par les cristaux avant réaction. La forme de la fonction f(ΔG) décrivant la croissance et la dissolution des minéraux de faibles surfaces spécifiques dépend ainsi de la disponibilité en sites réactifs sur les faces exprimées qui contrôlent leur réactivité et donc de l'historique des interactions des fluides avec ces faces et des conditions hydrodynamiques des expériences de croissance et dissolution. On propose la quantification de la rugosité des faces comme une voie prometteuse pour approximer la densité des sites réactifs. Enfin, on examine les conséquences de différentes lois de vitesse, près de l'équilibre, sur la quantification de l'altération des lœss le long de la vallée du Mississippi au cours des cent prochaines années.
Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , ,