Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4464488 | Global and Planetary Change | 2006 | 11 Pages |
The North Atlantic Oscillation (NAO) is the leading mode of atmospheric variability in the North Atlantic region, influencing storm tracks and creating a dipole pattern of precipitation from north to south across Western Europe. This distinct spatial distribution of precipitation provides a framework that can be potentially used to identify and reconstruct patterns of past NAO-forced climate variability. In this study we use tree-ring width series from Western Europe, in conjunction with principal components analysis and advanced spectral methods, to prospect for quasi-periodic climate signals that are forced by the NAO. We identify a robust 25-yr anti-phased synchronization in climate variability between Scandinavia and the Mediterranean during the 17th–20th centuries. The amplitude of the 25-yr beat displays a long-term modulation in northern and southern Europe, with minimum amplitude during the late Maunder Minimum. This amplitude minimum coincides with a maximum in Δ14C, suggesting a potential solar or oceanic influence on the intensity of the 25-yr band of quasi-periodic variability.