Article ID Journal Published Year Pages File Type
4464566 Global and Planetary Change 2006 15 Pages PDF
Abstract

Models that allow vegetation to respond to and interact with climate provide a unique method for addressing questions regarding feedbacks between the ecosystem and climate in pre-Quaternary time periods. In this paper, we consider how Dynamic Global Vegetation Models (DGVMs), which have been developed for simulations with present day climate, can be used for paleoclimate studies. We begin with a series of tests in the NCAR Land Surface Model (LSM)-DGVM with Eocene geography to examine (1) the effect of removing C4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO2 used in the photosynthetic rate equations. The tests were designed to highlight some of the challenges of using these models and prompt discussion of possible improvements. We discuss how lack of detail in model boundary conditions, uncertainties in the application of modern plant functional types to paleo-flora simulations, and inaccuracies in the model climatology used to drive the DGVM can affect interpretation of model results. However, we also review a number of DGVM features that can facilitate understanding of past climates and offer suggestions for improving paleo-DGVM studies.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,