Article ID Journal Published Year Pages File Type
4465068 International Journal of Applied Earth Observation and Geoinformation 2011 14 Pages PDF
Abstract

Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants.

Research highlights▶ A thermal sharpening model, TsHARP, and four variants of it, were evaluated by applying them to an agricultural mosaic in northern India. ▶ The models were based on empirical relations between land surface temperature (LST) and normalised difference vegetation index (NDVI). ▶ A modified version of the TsHARP model, based on local regression within a moving window was found to be most accurate. The RMSE of an image sharpened from 1000 m to 250 m was 2 K.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,