Article ID Journal Published Year Pages File Type
4465414 International Journal of Applied Earth Observation and Geoinformation 2007 15 Pages PDF
Abstract

In this paper we consider the estimation of lake water quality constituent distributions from hyperspectral remote sensing data. We present a computational approach that can be used to assimilate information from mathematical evolution models into data processing. The method is based on a reduced order iterated extended Kalman filter, and a convection–diffusion model is used to describe the movement of the water quality constituents. The performance of the technique is evaluated in a simulation study. The results show that the filter approach with an appropriate evolution model yields estimates that have better spatial and temporal resolutions than those obtained with conventional methods. Furthermore, the use of a feasible evolution model may make it possible to obtain information also on the concentrations in the lower parts of the lake.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,