Article ID Journal Published Year Pages File Type
4465438 International Journal of Applied Earth Observation and Geoinformation 2006 12 Pages PDF
Abstract

A new approach to the analysis of hyperspectral data for the purpose of surface compositional mapping is presented in this paper. We use an interpolated value of the absorption band position and the absorption band depth for the diagnostic of mineral absorption features. Using thresholds for this depth and position, the data is transformed to indicator [0,1] values. By kriging these values, we obtain the probability of exceeding certain absorption depth and the probability of a pixel exhibiting absorption features within a specified wavelength region. Using Bayesian statistics, the indicator kriging derived probabilities are used to produce a hard classification result. By adapting the prior probabilities to the dominant mineralogy in the various alteration facies mapped, data stratification is achieved. The classification results are compared to results derived using the spectral angle mapper and maximum likelihood classification. In addition, the results are statistically compared to field spectral data classified into dominant mineralogy. The indicator approach and the spectral angle mapper produce favourable results relative to field data and in comparison to the maximum likelihood classifier. A data set from the Rodalquilar high-sulfidation epithermal gold system in SE Spain, consisting of HyMAP airborne imaging spectrometer data and ASD field spectra focusing on the key minerals alunite, kaolinite, illite and chlorite, is used to illustrate the methodology.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
,