Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4472022 | Waste Management | 2012 | 7 Pages |
High temperature combustion experiments of waste printed circuit boards (PCBs) were conducted using a lab-scale system featuring a continuously-fed drop tube furnace. Combustion efficiency and the occurrence of inorganic bromine (HBr and Br2) were systematically studied by monitoring the main combustion products continuously. The influence of furnace temperature (T) was studied from 800 to 1400 °C, the excess air factor (EAF) was varied from 1.2 to 1.9 and the residence time in the high temperature zone (RTHT) was set at 0.25, 0.5, or 0.75 s.Combustion efficiency depends on temperature, EAF and RTHT; temperature has the most significant effect. Conversion of organic bromine from flame retardants into HBr and Br2 depends on temperature and EAF. Temperature has crucial influence over the ratio of HBr to Br2, whereas oxygen partial pressure plays a minor role. The two forms of inorganic bromine seem substantially to reach thermodynamic equilibrium within 0.25 s. High temperature is required to improve the combustion performance: at 1200 °C or higher, an EAF of 1.3 or more, and a RTHT exceeding 0.75 s, combustion is quite complete, the CO concentration in flue gas and remained carbon in ash are sufficiently low, and organobrominated compounds are successfully decomposed (more than 99.9%).According to these results, incineration of waste PCBs without preliminary separation and without additives would perform very well under certain conditions; the potential precursors for brominated dioxins formation could be destroyed efficiently. Increasing temperature could decrease the volume percentage ratio of Br2/HBr in flue gas greatly.
► The combustion efficiency of waste printed circuit boards (PCBs) depends on temperature, excess air factor, and high temperature zone residence time. Temperature has the most significant impact. Under the proposed condition, combustion of waste PCBs alone is quite complete within the furnace. ► High temperature prompts a more complete bromine release and conversion. When temperature is high enough, 99.9% organobrominated compounds, the potential precursors for brominated dixoins formation, are destroyed efficiently and convert to inorganic bromine in flue gas, as HBr and Br2. ► Temperature has crucial influence over the inhibition of HBr conversion to Br2, while the oxygen partial pressure plays a reverse role in the conversion to a very small extent. Increasing temperature will decrease the volume percentage ratio of Br2/HBr in flue gas greatly. ► The thermodynamic equilibrium approach of bromine conversion was investigated. The two forms of inorganic bromine in flue gas substantially reach thermodynamic equilibrium within 0.25 s. Under the proposed operating condition, the reaction of Br transfer and conversion finish.