Article ID Journal Published Year Pages File Type
4472901 Waste Management 2010 7 Pages PDF
Abstract

The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552–62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8–99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2–4.8% in the 1st digester and 1.8–7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49–60% and 48.6–64.7%, respectively. Methane production rate was in the range of 0.02–0.04, 0.04–0.07, and 0.02–0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,